554 research outputs found

    The relevance of point defects in studying silica-based materials from bulk to nanosystems

    Get PDF
    The macroscopic properties of silica can be modified by the presence of local microscopic modifications at the scale of the basic molecular units (point defects). Such defects can be generated during the production of glass, devices, or by the environments where the latter have to operate, impacting on the devices’ performance. For these reasons, the identification of defects, their generation processes, and the knowledge of their electrical and optical features are relevant for microelectronics and optoelectronics. The aim of this manuscript is to report some examples of how defects can be generated, how they can impact device performance, and how a defect species or a physical phenomenon that is a disadvantage in some fields can be used as an advantage in others

    29Si Hyperfine Structure of the E'_\alpha Center in Amorphous Silicon Dioxide

    Full text link
    We report a study by electron paramagnetic resonance (EPR) on the E'_\alpha point defect in amorphous silicon dioxide (a-SiO2). Our experiments were performed on gamma-ray irradiated oxygen-deficient materials and pointed out that the 29Si hyperfine structure of the E'_alpha consists in a pair of lines split by 49 mT. On the basis of the experimental results a microscopic model is proposed for the E'_alpha center, consisting in a hole trapped in an oxygen vacancy with the unpaired electron sp3 orbital pointing away from the vacancy in a back-projected configuration and interacting with an extra oxygen atom of the a-SiO2 matrix.Comment: 4 page

    Structure of the FeBTC Metal\u2013Organic Framework: A Model Based on the Local Environment Study

    Get PDF
    The local environment of iron in FeBTC, a metal organic framework commercially known as Basolite F300, is investigated combining XANES and EXAFS studies of the iron K-edge. The building block of the FeBTC can be described as an iron acetate moiety. Dehydration induces a change in the coordination of the first shell while preserving the network. We propose that the local structure around Fe atoms does not undergo a rearrangement, thus, leading to the formation of an open site. The analysis conveys that the FeBTC is a disordered network of locally ordered blocks

    Investigation by raman spectroscopy of the decomposition process of HKUST-1 upon exposure to air

    Get PDF
    We report an experimental investigation by Raman spectroscopy of the decomposition process of Metal-Organic Framework (MOF) HKUST-1 upon exposure to air moisture (T=300 K, 70% relative humidity). The data collected here are compared with the indications obtained from a model of the process of decomposition of this material proposed in literature. In agreement with that model, the reported Raman measurements indicate that for exposure times longer than 20 days relevant irreversible processes take place, which are related to the occurrence of the hydrolysis of Cu-O bonds. These processes induce small but detectable variations of the peak positions and intensities of the main Raman bands of the material, which can be related to Cu-Cu, Cu-O, and O-C-O stretching modes. The critical analyses of these changes have permitted us to obtain a more detailed description of the process of decomposition taking place in HKUST-1 upon interaction with moisture. Furthermore, the reported Raman data give further strong support to the recently proposed model of decomposition of HKUST-1, contributing significantly to the development of a complete picture of the properties of this considerable deleterious effect

    Sensing of transition metals by top-down carbon dots

    Get PDF
    Carbon quantum dots (CQDs) are a new class of carbon-rich materials with a range of unique optical and structural properties. They can be defined as carbon nanoparticles, with sizes in the range of 1–10 nm, displaying absorption and emission activities in the UV-VIS range. Depending on the structure, CQDs display a wide variability of properties, which provides the possibility of finely tuning them for several applications. The great advantages of CQDs are certainly the ease of synthesis, non-toxicity, and the strong interactions with the surrounding environment. Based on this, CQDs are especially promising as selective chemosensors. The present study reports on carbon quantum dots synthesized with a top-down (TD) approach, and characterized by different optical, spectroscopic, and morphological techniques to identify the selectivity for metal ions belonging to the first transition series. In particular, the study focuses on the interaction between two samples, namely TD and TDA, featuring different surface functionalization, and heavy metal ions. Their sensing towards Co2+, Cu2+, Fe3+, Zn2+, and Ni2+ has been tested by fluorescence (PL), steady state absorption spectroscopy, and time-resolved PL spectroscopy, in order to determine the fluorescence quenching. We found a PL quenching in the presence of concentrations of metal salts starting from 0.5 µM, and a selectivity towards the interacting ions, depending on CQDs’ surface features paving the way for their use for sensing

    Delocalized Nature of the E'-delta Center in Amorphous Silicon Dioxide

    Full text link
    We report an experimetal study by Electron Paramagnetic Resonance (EPR) of E'-delta point defect induced by gamma ray irradiation in amorphous SiO2. We obtained an estimetion of the intensity of the 10 mT doublet characterizing the EPR spectrum of such a defect arising from hyperfine interaction of the unpaired electron with a 29Si (I=1/2) nucleus. Moreover, determining the intensity ratio between this hyperfine doublet and the main resonance line of E'-delta center, we pointed out that unpaired electron wave function of this center is actually delocalized over four nearly equivalent silicon atoms.Comment: approved for publication in Physical Review Letter

    Properties of HO2• radicals induced by γ-ray irradiation in silica nanoparticles

    Get PDF
    We report an experimental investigation on the effects of γ-ray irradiation in several types of silica nanoparticles previously loaded with O2 molecules. They differ in specific surface and average diameter. By electron paramagnetic resonance (EPR) measurements we observe the generation of about 1018 HO2•/cm3 interstitial radicals. These radicals are induced by reaction of interstitial O2 molecules with radiolytic H atoms, as previously suggested for O2-loaded bulk a-SiO2 samples. However, at variance with respect to bulk materials, our experimental evidences suggest a different generation process of HO2• radical. In fact, by a detailed study of samples exposed to D2O, our results prove that radiolytic hydrogen atoms reacting with O2 to produce HO2• mainly arise from a radiation induced breaking of H2O molecules in the layers surrounding the nanoparticles or in the interstices. Also, by the correlation of HO2• paramagnetic centers concentration, determined by EPR measurements, and O2 Raman/PL signal we further considered the issue of the direct estimation of the O2 concentration in silica nanoparticles from Raman/PL spectra giving an independent conversion factor (the ratio between these latter two quantities), which is in good agreement with those previously proposed by other authors basing on optical measurements

    A comparative study of top-down and bottom-up carbon nanodots and their interaction with mercury ions

    Get PDF
    We report a study of carbon dots produced via bottom-up and top-down routes, carried out through a multi-technique approach based on steady-state fluorescence and absorption, time-resolved fluorescence spectroscopy, Raman spectroscopy, infrared spectroscopy, and atomic force microscopy. Our study focuses on a side-to-side comparison of the fundamental structural and optical properties of the two families of fluorescent nanoparticles, and on their interaction pathways with mercury ions, which we use as a probe of surface emissive chromophores. Comparison between the two families of carbon dots, and between carbon dots subjected to different functionalization procedures, readily identifies a few key structural and optical properties apparently common to all types of carbon dots, but also highlights some critical differences in the optical response and in the microscopic mechanism responsible of the fluorescence. The results also provide suggestions on the most likely interaction sites of mercury ions at the surface of carbon dots and reveal details on mercury-induced fluorescence quenching that can be practically exploited to optimize sensing applications of carbon dots

    Origin of the solid-state luminescence of MIL-53(Al) and its connection to the local crystalline structure

    Get PDF
    Metal-organic frameworks (MOFs) are extensively studied due to their unique surface properties, enabling many intriguing applications. Breathing MOFs, a subclass of MOFs, have gained recent interest for their ability to undergo structural changes based on factors like temperature, pressure, adsorbed molecules. Certain MOFs also exhibit remarkable optical properties useful for applications such as sensors, light-emitting diodes, and scintillators. The most promising MOFs possess high porosity, breathing properties, and photoluminescence activities, allowing for improved device responsiveness and selectivity. Understanding the relationship between crystal structures and photoluminescence properties is crucial in these cases. As studies on this topic are still very limited, we report for the first time an exhaustive study on the solid-state luminescence of the breathing MOF MIL-53(Al), that can stabilize in three different crystalline structures: open-pore, hydrated narrow-pore and closed-pore. We unveil a fascinating solid-state luminescence spectrum, comprising three partially overlapping bands, and elucidate the intricate electronic transitions within each band as well as their intimate correlation with the local crystalline structures. Our characterizations of spectroscopic properties and decay times provide a deeper understanding of the luminescent behaviour of MIL-53(Al) and demonstrate that is possible to identify present crystalline structures by optical measurements or to modify the optical properties inducing structural transitions for this type of materials. These insights could help to design next-generation, selective sensors or smart light emitting devices
    • …
    corecore